Programming for Humanilies Students

Brianna Blackwell

When you ask a student in the humanities how they feel about programming, they =
will often say they find it daunting. In the digital humanities, however, being able to
write or understand code is important in a significant amount of the work in the field.
My question, then, is: How can we introduce programming to humanities students in
a way that is both unintimidating and relevant? This question is important to me
because | struggled (and often still struggle) while learning to program. The bar of
entry to a lot of digital humanities work is far too high, and this turns a lot of
otherwise interested people away from the field. | was lucky enough to have some
background in programming before | started, but for those who don't, many existing
resources can be alienating. They are often geared towards math and the sciences,
are only available in courses or workshops, or are on sites like github, which are
less likely to be frequented by humanities students. My approach to this problem is
based off of what | would have found most helpful when | first started to learn

- R programming: a game that teaches programming while embracing exploration and
failure.
| | L1 . . .
| 1 1 Inspiralion and Insighls

When thinking about how to approach a programming game for humanists, I've drawn inspiration
from a few places. Most important have been the games Loved by Alexander Ocias and Hades by

Supergiant Games. Loved is a browser-based
platformer that explores (among many other things)
the relationship between a game's instructions and the
player's free will. The more the player disobeys the
narrator's instructions, the more colorful the game's
world becomes. Using this game, | have been thinking
about how to push the player to explore the bounds of
a programming language in a way similar to the way
they would explore a game world. For me, the colors

Loved b -A|excmder Ocias in Loved have been a really helpful metaphor for
Y responding to this sort of experimentation.

Rewarding the player's experimentation when they
succeed isn't enough, though. Programming can be
really frustrating, especially for beginners. The error
messages that result from trying to run code that has
logical or syntactical problems are both frequent and
cryptic. Enter Hades, a rogue-like game that thrives in
a contentious genre because the creators figured out Hades by Supergiant Games
how to make failure as compelling as winning. When
the player fails a run, they get to experience more of the game's story and characters. From Loved
and Hades, I've gained a lot of insight info how to encourage the player to explore and learn, and
how to encourage them in both the success and failure that experimentation requires.

Design and Inlerface

The design of the game has evolved quite a bit. Originally,
| had planned to make a narrative platformer. However, |
found it difficult to integrate both programming information ‘
and rewards into the game while keeping the focus on a AL

story. Instead, I've decided on a codebreaking game that s (9 4
rewards experimentation in code by revealing pieces of a & pplatar

story. Alternatively, players who already know how the \ "“’“‘E’/‘\Q’g% S
code works can run the completed code and reveal only the | Appdn — WA

parts of the story that would be produced by the code.

import nltk
import urllib.request

url = "ht /gutenbery.org/cache/epub,

with urlli
text

text tokens = nltk.word tokeniz
words = [word for word in text tokens if word.isalpha(}]

bigrams = list({nltk.ngrams(words, 2))
bigram frag 1tk.FragDist (bigrams)

print(bigram freq.most common(10)

Importing Variable Functions Punctuation Keywords
Packages

url bigrams
file bigram_freq

urlopen () isalpha ()
read() ngrams ()

import
nltk

urllib.request text decode () FregDist ()
text tokens strip () most_common ()
words lower () list()

word tokenize()

Interface Prototype

In this interface prototype, the story in the upper left begins as encoded text. The player can interact with
the wordbank on the bottom, leftclicking to input code into the workspace on the top right or right-
clicking to learn more about a piece of code and how it works in the completed program. Interacting
with the wordbank also decodes words in the story. If the player has put code into the empty workspace,
they can run it at any time, and an explanation of what that code does or the error messages it produces
will appear. A completed version of the code can also be toggled on or off in the workspace. When on,
the player can run the code to highlight the words in the story that would result from that code. For
example, the code in the prototype above finds the most common word pairs in the given text. If the
player runs the completed code, the word pairs would decode or change color, depending on whether
the player had already revealed the words by interacting with the wordbank.

Lighlning

The very kind and thoughtful advice I've received while sharing this project during Lightning at Building
21 has been incredibly helpful. A lot of people have had a significant impact on my thinking about this
project and the direction it has taken so far. Despite the fact that | haven't been able to make it as often
as I'd like to, Lightning sessions have always been welcoming and encouraging spaces to think through
these questions and learn from a community.

00l ’\0/\ e

